Fundamental Integration Formulas –

Integrating means determining the antiderivative function with respect to a previously derived function, that is, we will perform an inverse operation of the differentiation. We call a function F(x) of the antiderivative f(x) on a given interval, only if for all I we have F'(x) = f(x).
If F(x) is an integral of f(x), then so is F(x) + C, where C is an arbitrary constant. For example, the functions given by x², x² + 6, x² – 2 It is x² + 10 are integrals of 2xgiven that d/dx (x²) = d/dx (x² + 6) = d/dx (x² – 2) = d/dx (x² + 10) = 2x.

To perform the integration of functions, aiming to discover the primitive function, we use some fundamental integration formulas. Watch:

1. ∫ d/dx dx = f(x) + C

2. ∫(u + v) dx = ∫ u dx + ∫ v dx

3. ∫ au dx = a ∫ u dx, where a is any constant.

4. ∫ un du = ∫ (un+1/n+1) + C, if n ≠ – 1

5. ∫ du/u = ln u + C, if u > 0

6. ∫ au du = au/lna + C, if a > 0

7. ∫ eu du = eu + C

8. ∫ sin u du = – cos u + C

Don’t stop now… There’s more after the publicity 😉

9. ∫ cos u du = sin u + C

10. ∫ tg u du = ln sec u + C

11. ∫ cotg u du = ln sin u + C

12. ∫ sec u du = ln (sec u + yg u) + C

13. ∫ cosec u du = ln (cosec u – cotg u) + C

14. ∫ sec² u du = tg u + C

15. ∫ cosec² u du = – cotg u + c

16. ∫ sec u tg u du = sec u + C

17. ∫ cosec u cotg u du = – cosec u + C

18.

19.

20.

21.

22.

23.

24.

25.

26.

By Marcos Noah
Graduated in Mathematics
Team

FunctionMathematics