Integrating means determining the antiderivative function with respect to a previously derived function, that is, we will perform an inverse operation of the differentiation. We call a function F(x) of the antiderivative f(x) on a given interval, only if for all I we have F'(x) = f(x).
If F(x) is an integral of f(x), then so is F(x) + C, where C is an arbitrary constant. For example, the functions given by x², x² + 6, x² – 2 It is x² + 10 are integrals of 2xgiven that d/dx (x²) = d/dx (x² + 6) = d/dx (x² – 2) = d/dx (x² + 10) = 2x.
To perform the integration of functions, aiming to discover the primitive function, we use some fundamental integration formulas. Watch:
1. ∫ d/dx dx = f(x) + C
2. ∫(u + v) dx = ∫ u dx + ∫ v dx
3. ∫ au dx = a ∫ u dx, where a is any constant.
4. ∫ un du = ∫ (un+1/n+1) + C, if n ≠ – 1
5. ∫ du/u = ln u + C, if u > 0
6. ∫ au du = au/lna + C, if a > 0
7. ∫ eu du = eu + C
8. ∫ sin u du = – cos u + C
Don’t stop now… There’s more after the publicity 😉
9. ∫ cos u du = sin u + C
10. ∫ tg u du = ln sec u + C
11. ∫ cotg u du = ln sin u + C
12. ∫ sec u du = ln (sec u + yg u) + C
13. ∫ cosec u du = ln (cosec u – cotg u) + C
14. ∫ sec² u du = tg u + C
15. ∫ cosec² u du = – cotg u + c
16. ∫ sec u tg u du = sec u + C
17. ∫ cosec u cotg u du = – cosec u + C
18.
19.
20.
21.
22.
23.
24.
25.
26.
By Marcos Noah
Graduated in Mathematics
Team
Function – Mathematics –